
GoPTX: Fine-grained GPU
Kernel Fusion by PTX-level
Instruction Flow Weaving

Kan Wu, Zejia Lin, Mengyue Xi, Zhongchun Zheng, Wenxuan Pan,
Xianwei Zhang*, Yutong Lu**

{zhangxw79*, luyutong**}@mail.sysu.edu.cn

Background: GPU

• Heavily utilized in HPC and AI domains

• Massive thread execution (Warp)

• Warp frequently encounters stalls

• Causing a switch to another thread
resulting in "bubbles"

2

• Mainly scoreboard stalls
• Handle data hazards

• Enable out-of-order execution

• Data dependencies can't be
fully overlapped by
instruction reordering

• Fill bubbles with sth. else ...

Insight

3

Fig. Stall reasons breakdown of 7 selected kernels.

• ... Fill bubbles with another instruction flow
• Weaving instructions to increase data dependency length and thus ILP

• Fine-grained intra-SM resource sharing across kernels to improve utilization

• Hardware level solution
• Hyper-threading

• Cost is too high for GPU

• Turn to software solution

Motivation

4

Fig. Increase dependency length by instruction weaving.

• Complex Instruction Flows
• if, else, while, for, break, continue ...

• turn to PTX-level control flow graphs (CFGs)

• Deadlocks in multithreading

• Instruction Scheduling is NP-hard

• No official PTX processing tools
provided by NVIDIA

Challenge

5

1. Adaptive Code Slicing (optional)

• Enhance weaving opportunity

2. CFG Merging
(by a custom PTX parser based on ANTLR4)

3. Latency-Aware Instruction Weaving

Design of GoPTX

6

• Merge kernels into one
• Preserve semantics of both kernel

• Data dependencies, branching behavior, ...

• Combine basic blocks (BBs)
• By traversalling all the possibilities

• Build CFG
• Insert necessary dummy nodes for branch

conditions

Control Flow Graph Merging

7

• Instruction scheduling is NP-Hard

• Generate good heuristic input to ptxas backend

• Greedily select instructions

• From flow with the lower latency sum

• Microbenchmark-driven
latency measurement

Latency-aware Instruction Weaving

8

• Potential scheduling Space in CFG Merging
• Short BB may fail to hide the latency of the long instruction flow

• Limit each slice‘s execution time
to the Threshold: the average of execution cycles of all BBs

Adaptive Code Slicing

9

• Race condition occurs when

syncs exist in both CFGs to merging

• Inserts dummy BBs
to delay the first sync until another

sync finish

Deadlock Avoiding

10

• Baseline: launching two kernels in separate cuStreams

• VFuse: vertical fusion that concatenates two kernels sequentially

• HFuse: horizontal fusion that schedules into different warps
• NVIDIA A100 & 7x7=49 workloads from 7 kernels of cuda sample, onnx-runtime…

Evaluation

11

• GoPTX 11.2% geomean speedup with a maximum of 23%

• VFuse 6.4%, gains from compute-intensive workloads but less than GoPTX
in other benchmarks

• HFuse 1.0%, extensive requires profiling to determine kernel combine ratio

Speedup

12

• GoPTX increases EWPC by geomean of 5.5% and max 50%

• VFuse exhibits minimal changes due to sequential concatenation

• HFuse reduces EWPC by 14.4% in exchange for TLP improvement

• GoPTX improves hardware utilization (More in the paper)

ILP as measured by eligible warps per cycle

13

• Chose WMMA+GELU and WMMA+HARRIS
• WMMA+GELU(both fp-16 bounded): speedup -2%, EWPC -35%, scoreboard +34%

• WMMA+HARRIS: speedup +20%, EWPC +38% , scoreboard -20.5%

• GoPTX may exacerbate stalls (still less than VFuse and HFuse) in cases
where kernels race for the same hardware resources

Case Study of stalls

14

• Merging only: 9.7%

• Merging+Slicing: 9.1%, but more overheads occur

• Merging+Weaving: 10.0%, less opportunities to weave

• GoPTX: 11.2%

Performance Breakdown

15
For more details, please refer to the paper.

• GPUs suffer from scoreboard warp stalls

• GoPTX fine-grained fuses concurrent kernels

1. PTX-level CFG Merging to preserve the semantics of input kernels

2. Latency-Aware Instruction Weaving to increase data dependency length

3. Adaptive BLock Slicing to enhance weaving opportunity

• Experimental demonstrate that GoPTX effectively improves

performance with higher ILP and utilization

Summary

16

Thank you!
Questions?

	幻灯片 1: GoPTX: Fine-grained GPU Kernel Fusion by PTX-level Instruction Flow Weaving
	幻灯片 2: Background: GPU
	幻灯片 3: Insight
	幻灯片 4: Motivation
	幻灯片 5: Challenge
	幻灯片 6: Design of GoPTX
	幻灯片 7: Control Flow Graph Merging
	幻灯片 8: Latency-aware Instruction Weaving
	幻灯片 9: Adaptive Code Slicing
	幻灯片 10: Deadlock Avoiding
	幻灯片 11: Evaluation
	幻灯片 12: Speedup
	幻灯片 13: ILP as measured by eligible warps per cycle
	幻灯片 14: Case Study of stalls
	幻灯片 15: Performance Breakdown
	幻灯片 16: Summary
	幻灯片 17: Thank you! Questions?

